Carotenoids and related polyenes. Part $3 .{ }^{1}$ First total synthesis of fucoxanthin and halocynthiaxanthin using oxo-metallic catalyst

Yumiko Yamano, Chisato Tode and Masayoshi Ito*
Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658, Japan

The first total synthesis of optically active fucoxanthin 1 and halocynthiaxanthin $\mathbf{2}$ had been accomplished via the 8 -oxo compound 5 , efficiently prepared by rearrangement of the α-acetylenic alcohol $\mathbf{1 0}$ using oxometallic catalyst and subsequent iodine-catalysed double-bond shift.

Introduction

The allenic carotenoid fucoxanthin $\mathbf{1}^{2}$ (Scheme 1) is known to be widely distributed in brown algae and to function as a lightharvesting pigment for photosynthesis ${ }^{3}$ in the sea. On the other hand, the acetylenic carotenoid halocynthiaxanthin $\mathbf{2}$ was first isolated ${ }^{4}$ from the sea squirt Halocynthia roretzi, together with fucoxanthin and other carotenoids. Recently, it has been found ${ }^{5}$ that both carotenoids possessing the β, γ-epoxy keto moiety as a common structure have effective antiproliferative and antitumour-promoting activities. Although over ten years have passed since the absolute stereostructures of these carotenoids were determined, there has been no report on their synthesis, probably because of difficulties in constructing the β, γ-epoxy keto moiety in the polyene chain, which was known ${ }^{6}$ to be extremely labile to alkali. Therefore, synthesis of these carotenoids is a fascinating challenge for the organic chemist. In a previous communication, ${ }^{7}$ we reported the first total synthesis of fucoxanthin 1 through the skeletal compound (C_{40}) 3 which was constructed by double Wittig condensations of the $\mathrm{C}_{10^{-}}$ dialdehyde 7 with the $8 \dagger$-oxo-Wittig salt $\left(\mathrm{C}_{15}\right) 6$ and the allenic Wittig salt (C_{15}) 8 (Scheme 1). In addition, halocynthiaxanthin 2 was first synthesized by the same methodology using the acetylenic Wittig salt $\left(\mathrm{C}_{15}\right) 9 .{ }^{8}$ Three Wittig salts 6,8 and 9 were derived from the common intermediate, α-acetylenic alcohol 10, which was previously synthesized ${ }^{9}$ in an optically active form (97% ee) from the readily available ($4 R, 6 R$)-4-hydroxy- $2,2,6$ trimethylcyclohexanone. Rearrangement of acetylenic alcohol 10 by means of oxo-metallic catalyst, ${ }^{10}$ followed by a doublebond shift, resulted in the effective formation of the key intermediate 5 leading to the total synthesis of our target compounds 1 and 2. Here, we describe a full account of these experiments.

Results and discussion

Synthesis of the \mathbf{C}_{15}-8-oxo-Wittig salt 6

The rearrangement of α-acetylenic alcohols into α, β-unsaturated carbonyl compounds by use of several oxo-metallic catalysts was reported. ${ }^{10}$ In the case of the application of this rearrangement to cyclohexanol derivatives, a mixture of α, β and β, γ-unsaturated carbonyl compounds was produced. Therefore, it is expected that the 8 -oxo compound 5, a precursor of the 8 -oxo-Wittig salt 6 , could be obtained by rearrangement of the α-acetylenic alcohol $10{ }^{9}$ by using oxometallic catalyst.

Although most of these rearrangements had been carried out at a high reaction temperature, it was recently reported ${ }^{10 a}$ that the combined use of tetrabutylammonium perrhenate
\dagger We have employed the numbering system used in the retinoids and carotenoids.
$\left(\mathrm{Bu}_{4} \mathrm{NReO}_{4}\right)$ and toluene- p-sulfonic acid (PTSA) effectively catalysed such rearrangement even at room temperature. Thus, we applied this method to the α-acetylenic alcohol 10. Reaction of compound 10 with $\mathrm{Bu}_{4} \mathrm{NReO}_{4}(5 \mathrm{~mol} \%$) and PTSA ($5 \mathrm{~mol} \%$) at room temperature unfortunately failed to afford the desired β, γ-unsaturated ketone 5 , but instead yielded the rearranged α, β-unsaturated ketones 11a ($6 E$-isomer; 32%) and 11b ($6 Z-$ isomer, 50%) accompanied by the dehydrated product $12{ }^{9}$ (14%) (Scheme 2). The structures of products 11a,b were confirmed on the basis of their spectral data (see Experimental section). Their IR spectra showed the absorption ($\sim 1650 \mathrm{~cm}^{-1}$) due to an α, β-unsaturated ketone. The conformations and stereochemistries of these isomers were determined to be as shown in Scheme 2 by ${ }^{1} \mathrm{H}$ NMR spectroscopy, including 2D nuclear Overhauser enhancement spectroscopy (NOESY) experiments. $3-\mathrm{H}(\delta 5.27, \mathrm{tt}, J 11.5$ and 4.5 Hz$)$ of the isomer 11a was assigned as axial and the corresponding hydrogen ($\delta 5.06$, quint-like, $J 4.5 \mathrm{~Hz}$) of the isomer 11b as equatorial from their J-values. In 2D NOESY experiments, cross-peaks between 7-H and both leq- and 9 -methyl protons were observed in compound 11a. On the other hand, cross-peaks between 7-H and both $5-\mathrm{Me}$ and $10-\mathrm{H}$ appeared in compound 11b. This reaction may be envisaged to proceed via the perrhenate ester I which undergoes rearrangement to the allenic intermediate II to afford the α, β-unsaturated ketones 11a,b. The dehydrated product 12 may be formed via the same intermediate I by intramolecular hydrogen shift (C-5 to oxo-metallic oxygen). This was supported by the fact that the same reaction of the alcohol 13, which was obtained ${ }^{9}$ together with its C-6 diastereoisomer 10 as a minor product, gave only rearranged products $11 \mathrm{a}(39 \%)$ and $11 \mathrm{~b}(58 \%)$.

On the other hand, treatment ${ }^{10 b}$ of compound 10 with tris(triphenylsilyl) vanadate ($1 \mathrm{~mol} \%$), triphenylsilanol (14 $\mathrm{mol} \%$) and benzoic acid ($1.6 \mathrm{~mol} \%$) in refluxing xylenes gave α, β - and β, γ-unsaturated ketones 11b (35%) and 5 (58%) (Scheme 3). Under these reaction conditions, compound 11a was converted into the β, γ-unsaturated ketone 5 (81%); nevertheless compound 11b remained unchanged (Table 1, entries 1 and 3). Thus, compound 5 was assumed to be derived from the $6 E$-isomer 11a through the enol intermediate III by intramolecular hydrogen shift ($\mathrm{C}-5$ to carbonyl oxygen).

In order to obtain the desired β, γ-unsaturated ketone 5 effectively, conversion of the $6 Z$-isomer 11b into compound 5 was investigated in detail. Since the $6 E$-isomer 11a can be converted into the required compound 5 , isomerization of Z 11b to E-isomer 11a was required. Therefore, the $6 Z$-isomer 11b was treated with 0.015% iodine in refluxing hexane for 6 h to give the β, γ-unsaturated ketone 5 in 72% yield (Table 1, entry 4). Treatment of $6 Z$-isomer 11 b with a higher concentration of iodine (0.02%) in refluxing heptane instead of hexane afforded compound $5(80 \%)$ effectively in a shorter time (0.8 h) (entry 6). This reaction was found to proceed through the intermediate

$3 R^{1}=X$
$4 R^{1}=Y$
$\mathbf{Y}=$

$5 \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OAC}$
$6 \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Cl}^{-}$

$$
\begin{aligned}
& 8 R^{1}=X \\
& 9 R^{1}=Y
\end{aligned}
$$

10

Scheme 1

Scheme 2

Table 1 Conversion of the α, β-unsaturated ketones $11 \mathrm{a}, \mathrm{b}$ into the β, γ-unsaturated ketone 5

Entry	Substrate	Reagent	Conditions	Yield (\%) of 5
1	11a	$\begin{aligned} & \left(\mathrm{Ph}_{3} \mathrm{SiO}\right)_{3} \mathrm{VO}, \\ & \mathrm{Ph}_{3} \mathrm{SiOH}, \mathrm{PhCO}_{2} \mathrm{H} \end{aligned}$	reflux, xylenes, 2.5 h	81
2	11a	$0.02 \% \mathrm{I}_{2}$ solution	reflux, heptane, 0.8 h	81
3	11b	$\begin{aligned} & \left(\mathrm{Ph}_{3} \mathrm{SiO}\right)_{3} \mathrm{VO}, \\ & \mathrm{Ph}_{3} \mathrm{SiOH}, \mathrm{PhCO}_{2} \mathrm{H} \end{aligned}$	reflux, xylenes, 6 h	no reaction
4	11b	$0.015 \% \mathrm{I}_{2}$ solution	reflux, hexane, 6 h	72
5	11b	$0.02 \% \mathrm{I}_{2}$ solution	reflux, hexane, 2 h	72
6	11 b	$0.02 \% \mathrm{I}_{2}$ solution	reflux, heptane, 0.8 h	80

$6 E$-isomer 11a, which was isolated in the course of the conversion. The $6 E$-isomer 11a was also transformed into the β, γ-unsaturated ketone 5 (81%) under the same conditions (entry 2).
Mild hydrolysis of the ketone 5 with 10% aq. potassium carbonate gave the hydroxy enone 14 , which was allowed to react with lithium chloride and methanesulfonyl chloride (MsCl) followed by treatment of the intermediate chloride 15 with triphenylphoshine to provide the $\mathrm{C}_{15}-8$-oxo-Wittig salt 6 in 60% yield from acetate 5 (Scheme 3).

Scheme 3 Reagents and conditions: $\mathrm{i},\left(\mathrm{Ph}_{3} \mathrm{SiO}\right)_{3} \mathrm{VO}, \mathrm{Ph}_{3} \mathrm{SiOH}$, $\mathrm{PhCO}_{2} \mathrm{H}$, xylenes, reflux; ii, cat. I_{2}, heptane, reflux; iii, 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$; iv, $\mathrm{LiCl}, \mathrm{MsCl}, \gamma$-collidine; $\mathrm{v}, \mathrm{PPh}_{3}, \mathrm{CHCl}_{3}$, reflux

Synthesis of the \mathbf{C}_{15}-allenic Wittig salt 8

The C_{15}-acetylenic diacetate 10 was transformed in 5 steps into the known allenic aldehyde $16,{ }^{1}$ which was reduced with sodium boranuide to give the allenic alcohol 17 (96%).

Treatment of alcohol 17 with lithium chloride and MsCl and successive reaction of the intermediate chloride 18 with triphenylphosphine gave the C_{15}-allenic Wittig salt 8 in 74% yield (Scheme 4).

Scheme 4 Reagents and conditions: i, $\mathrm{NaBH}_{4} ; \mathrm{ii}, \mathrm{LiCl}, \mathrm{MsCl}, \gamma-$ collidine; iii, $\mathrm{PPh}_{3}, \mathrm{CHCl}_{3}, 50^{\circ} \mathrm{C}$

Synthesis of optically active fucoxanthin

The Wittig condensation of phosphonium salt 6 with $\mathrm{C}_{10}{ }^{-}$ dialdehyde 7 in the presence of sodium methoxide as a base, followed by hydrolysis, afforded a mixture of 8 -oxoapocarotenals. Separation by preparative HPLC (PHPLC) provided the all- E-isomer $19(32 \%)$ and the $11 Z$-one $20(29 \%)$ each in pure form (Scheme 5). The latter was isomerized to the former in 94% yield by treatment ${ }^{11}$ with a palladium catalyst. Consequently, treatment of a crude mixture of apocarotenals 19 and 20 with a palladium catalyst produced all- E-enal 19 in 77% yield from phosphonium salt 6 . Stereochemistries of the newly formed 11,12-double bonds of these isomers were determined from the coupling constants (19: $15 \mathrm{~Hz} ; \mathbf{2 0}: 11.5 \mathrm{~Hz}$) between 11 - and $12-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectra. NOE experiments (crosspeaks between $7-\mathrm{H}_{2}$ and $10-\mathrm{H}$) showed that the 8,9 -single bond in enal 19 is s-trans. After protection (79%) of the hydroxy group of compound 19 , the resulting triethylsilyl (TES) ether 21 was treated with the allenic Wittig salt 8 with sodium methoxide as a base to give a mixture of the condensed products, which without purification was acetylated, desilylated by the combined use of tetrabutylammonium fluoride (TBAF) and acetic acid, and subsequently separated by PHPLC to provide the all- E-fucoxanthin skeletal compound 3 (22% from 21) and its 11 ' Z-isomer 22 (27% from 21). These structures were characterized by spectral data (see Experimental section). Isomerization of the $11^{\prime} Z$-isomer 22 by using a palladium catalyst ${ }^{11}$ afforded the all- E-isomer 3 in 45% yield. Finally, epoxidation of the skeletal compound $\mathbf{3}$ with m-chloroperbenzoic acid (MCPBA) followed by HPLC purification furnished a mixture ($36 \% ; \sim 7: 2$) of the syn-epoxide 23 and the antiepoxide 1 with some recovery (27%) of substrate 3 . Separation of the epoxide mixture by PHPLC using a chiral column

Scheme 5 Reagents: i, 7, NaOMe, then $10 \% \mathrm{NaOH}$; ii, TESOTf, γ-collidine; iii, $\mathrm{PdCl}_{2}\left(\mathrm{MeCN}_{2}, \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{iv}, \mathbf{8}, \mathrm{NaOMe}\right.$; v, $\mathrm{Ac} \boldsymbol{c}_{2} \mathrm{O}-\mathrm{Py}$; vi, TBAF, AcOH ; vii, MCPBA

Fig. 1 CD spectra in $\mathrm{Et}_{2} \mathrm{O}$-isopentane-EtOH (5:5:2) of fucoxanthin 1, anti-epoxide 23 and skeletal compound 3. Natural fucoxanthin ———; synthetic fucoxanthin —; anti-epoxide 23 - - - - ; skeletal compound $3 \ldots$...
(CHIRALCEL OD; DAICEL) gave each epoxide in pure form. Spectral data [IR, UV-VIS, ${ }^{1} \mathrm{H}$ NMR, ${ }^{12}$ MS and CD (Fig. 1)] of the purified anti-epoxide 1 were in good agreement with those of a natural specimen. \ddagger This is the first total synthesis of optically active fucoxanthin.

Synthesis of optically active halocynthiaxanthin

The total synthesis of optically active halocynthiaxanthin was also accomplished (Scheme 6) in the same pathway as described in the synthesis of fucoxanthin 1.
According to the literature, ${ }^{8}$ the acetylenic Wittig salt 9 was prepared from the diol 25 obtained by hydrolysis (93%) of the diacetate 24. ${ }^{9}$ The Wittig reaction between Wittig salt 9 and the 8 -oxoapocarotenal 19 afforded an isomeric mixture $(93 \%$; all$E: 9^{\prime} Z: 11^{\prime} Z: 9^{\prime} Z, 11^{\prime} Z \sim 4: 2: 2: 1$) of the condensed products. As these isomers were difficultly separable, the mixture was treated with the previous palladium catalyst ${ }^{11}$ to give a simple mixture of all- E-isomer 4 (35% from 19) and $9^{\prime} Z$-one 26 (33% from 19), which was cleanly separated by PHPLC in the dark.

Previous synthetic studies ${ }^{13}$ of acetylenic carotenoids and

[^0]related compounds showed that the condensation between the C_{15}-acetylenic Wittig salt and conjugated aldehydes was accompanied by stereomutation to give a product with a $9 Z-$ configuration. To avoid isomerization at position 9 , the reverse Wittig reaction was successfully carried out. ${ }^{13,14}$ Thus, in order to obtain the all- E-skeletal compound 4 exclusively, we attempted the route via the apocarotenal 31 from the acetylenic aldehyde 28. The apocarotenal 31 was prepared (31%) accompanied by the $11 Z$-isomer 32 (17%) and the $13 Z$-one 33 (9%) by a Wittig reaction between the Wittig salt 30 derived from aldehyde 29^{13} and the acetylenic aldehyde 28 prepared by oxidation of the diol 25 with active manganese dioxide. However, the Wittig condensation between aldehyde 31 and Wittig salt 6 did not proceed owing to low reactivity of the ylide formed from phosphonium salt 6 and weak electrophilicity of aldehyde 31.
Finally, epoxidation of the skeletal compounds 4 with MCPBA followed by HPLC purification furnished a mixture (49%) of the syn-epoxide 27, the anti-one 2 and other unidentified products, along with some recovery (16%) of starting material 4. Separation of the mixture by PHPLC using a chiral column (CHIRALCEL OD; DAICEL) gave synepoxide $27(16 \%)$ and halocynthiaxanthin $2(5 \%)$ each in pure form. Spectral data (IR, UV-VIS, ${ }^{1} \mathrm{H}$ NMR and MS) of the purified anti-epoxide $\mathbf{2}$ were in good agreement with those of a natural specimen.§ This is the first total synthesis of optically active halocynthiaxanthin.

Experimental

Mps were measured on a micro melting point apparatus (Yanagimoto) and are uncorrected. UV-VIS spectra were recorded on a JASCO Ubest-55 instrument, IR spectra on a Shimadzu IR-27G spectrometer, and FT-IR spectra on a Shimadzu FT-IR 4000 spectrometer. ${ }^{1}$ H NMR spectra at 200, 300 or 500 MHz were determined on a Varian XL-200, a Varian Gemini-200, or a Varian Gemini-300 or a Varian VXR-500 superconducting FT-NMR spectrometer, respectively, for deuteriochloroform solutions (tetramethylsilane as internal reference). J-Values are given in Hz . Mass spectra were taken on a Hitachi M-80 or a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter
§ This was kindly supplied by Dr W. Miki, Marine Biotechnology Institute Co., Ltd., Shimizu, Shizuoka, Japan.

Scheme 6 Reagents: i, 10% aq. KOH ; ii, 19, NaOMe ; iii, $\mathrm{PdCl}_{2}\left(\mathrm{MeCN}_{2}, \mathrm{Et}_{3} \mathrm{~N} ;\right.$ iv, $\mathrm{MnO}_{2} ; \mathrm{v}, \mathrm{HC}(\mathrm{OMe})_{3} / \mathrm{H}^{+}$; vi, NaOMe , then H^{+}; vii, 6, NaOMe ; viii, MCPBA
($[\alpha]_{D}$-values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$), and CD spectra on a JASCO J-500C. Short-column chromatography (CC) was performed on silica gel (Merck Art. 7739) under reduced pressure. Preparative TLC (PTLC) was performed on silica gel plates (Merck silica gel $60 \mathrm{~F}_{254}$ precoated plates, 0.5 mm thickness). Analytical and preparative HPLC was carried out on Shimadzu LC-3A, 5A, 6A and Waters Model 510 instruments with a UV-VIS detector.
Standard work-up means that the organic layers were finally washed with brine, dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure below $30^{\circ} \mathrm{C}$ using a rotary evaporator. All operations were carried out under nitrogen or argon. Ether refers to diethyl ether, and hexane to n-hexane. NMR assignments are given using the carotenoid numbering system.

Synthesis of Fucoxanthin 1

Rearrangement of the α-acetylenic alcohol 10 by an ammonium perrhenate catalyst. A solution of the α-acetylenic alcohol 10^{9} ($672 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NReO}_{4}(49 \mathrm{mg}, 0.1 \mathrm{mmol}$) and PTSA- $2 \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ was stirred at room temp. for 10 h . The mixture was diluted with ether and washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by short CC (ether-hexane, 3:7) followed by PHPLC [LiChrosorb Si $60(7 \mu \mathrm{~m}) 2.5 \times 25 \mathrm{~cm}$; etherhexane, 1:3] to afford the $6 E$-isomer 11a ($218 \mathrm{mg}, 32 \%$), the $6 Z$-one 11 b ($334 \mathrm{mg}, 50 \%$) and the dehydrated product 12 (86 $\mathrm{mg}, 14 \%$) as oils. Spectral properties of dienyne 12 were identical with those of the sample prepared previously. ${ }^{9}$ Compound 11a: $[\alpha]_{\mathrm{D}}^{21}-37.1(c 1.05, \mathrm{MeOH}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ 238 and 253 sh ; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{OAc})$ and 1651 (conj. CO); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.23\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right)$, $1.31(3 \mathrm{H}, \mathrm{d}, J 7.5,5-\mathrm{Me}), 1.46\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.11.5,2-\mathrm{H}^{\text {ax }}\right)$, $1.56\left(1 \mathrm{H}, \mathrm{td}, J 11.5\right.$ and $\left.6,4-\mathrm{H}^{\mathrm{ax}}\right), 1.86(3 \mathrm{H}, \mathrm{d}, J 1,9-\mathrm{Me}), 1.90$ $\left(2 \mathrm{H}, \mathrm{m}, 2-+4-\mathrm{H}^{\mathrm{eq}}\right), 2.03$ and 2.12 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), 3.57 $(1 \mathrm{H}$, qdd, $J 7.5,6$ and $1.5,5-\mathrm{H}), 4.80\left(2 \mathrm{H}, \mathrm{d}, J 6,11-\mathrm{H}_{2}\right), 5.27(1$ $\mathrm{H}, \mathrm{tt}, J 11.5$ and $4.5,3-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$ and $6.51(1 \mathrm{H}, \mathrm{tq}$, $J 6$ and 1, 10-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 337.202. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}, 337.201]$.

Compound 11b: $[\alpha]_{\mathrm{D}}^{22}-45.4(c 0.97, \mathrm{MeOH}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 234; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{OAc})$ and 1652 (conj. CO); $\delta_{\mathrm{H}}(500$ MHz) $1.03\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\text {eq }}\right.$), $1.12(3 \mathrm{H}, \mathrm{d}, J 6.5,5-\mathrm{Me}), 1.24(3 \mathrm{H}$, s, $\left.1-\mathrm{Me}^{\mathrm{ax}}\right), 1.56\left(1 \mathrm{H}\right.$, ddd, $J 14,12.5$ and $\left.6.5,4-\mathrm{H}^{\mathrm{ax}}\right), 1.60(1 \mathrm{H}$, dd, $J 14$ and $\left.4,2-\mathrm{H}^{\mathrm{ax}}\right), 1.75\left(1 \mathrm{H}\right.$, ddd, $J 14,5$ and $1.5,2-\mathrm{H}^{\mathrm{eq}}$), $1.85(3 \mathrm{H}, \mathrm{d}, J 1,9-\mathrm{Me}), 1.91(1 \mathrm{H}, \mathrm{dtd}, J 12.5,4.5$ and $1.5,4-$ H^{eq}), 2.06 and 2.11 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.78\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}^{\mathrm{ax}}\right)$, 4.80 and 4.84 (each 1 H , br dd, $J 15$ and 6, 11-H2), $5.06(1 \mathrm{H}$, quint-like, $J 4.5,3-\mathrm{H}), 5.77(1 \mathrm{H}$, d-like, $J 1.5,7-\mathrm{H})$ and 6.61 (1 $\mathrm{H}, \mathrm{tq}, J 6$ and $1,10-\mathrm{H})$ [Found: $\left.(\mathrm{M}+\mathrm{H})^{+}, 337.201\right]$.

Rearrangement of the α-acetylenic alcohol 13 by an ammonium perrhenate catalyst. In the same manner as described for the rearrangement of compound 10 by the tetrabutylammonium perrhenate catalyst, the α-acetylenic alcohol $13^{9}(672 \mathrm{mg})$ provided the $6 E$-isomer $11 \mathrm{a}(264 \mathrm{mg}, 39 \%)$ and the $6 Z$-one 11 b ($388 \mathrm{mg}, 58 \%$).
Rearrangement of the α-acetylenic alcohol 10 by a silyl vanadate catalyst. A solution of compound $10(1.68 \mathrm{~g}, 5.0$ mmol), triphenylsilanol ($210 \mathrm{mg}, 0.72 \mathrm{mmol}$), tris(triphenylsilyl) vanadate ($45 \mathrm{mg}, 0.05 \mathrm{mmol}$) and benzoic acid ($10 \mathrm{mg}, 0.08$ mmol) in xylenes ($10 \mathrm{~cm}^{3}$) was refluxed for 8 h . Evaporation off of the solvent gave a residue, which was purified by short CC (ether-hexane, 3:7) followed by PHPLC [LiChrosorb Si 60 (7 $\mu \mathrm{m}) 2.5 \times 25 \mathrm{~cm}$; ether-hexane, 1:3] to afford the α, β unsaturated ketone ($6 Z$-isomer) 11 b ($594 \mathrm{mg}, 35 \%$) and the β, γ unsaturated ketone $5(981 \mathrm{mg}, 58 \%$) as crystals. Compound 5 : $\mathrm{mp} 76-78^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}^{23}-46.9$ (c $1.13, \mathrm{MeOH}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 235 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730(\mathrm{OAc})$ and 1680 (conj. CO); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.91$ and 1.01 (each 3 H , s, gem-Me), $1.45(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.62\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.75(1 \mathrm{H}, \mathrm{ddd}, J$ 12,4 and $1.5,2-\mathrm{H}^{\mathrm{eq}}$), $1.84(3 \mathrm{H}, \mathrm{d}, J 1,9-\mathrm{Me}), 2.05$ and 2.13 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2)$, $2.15\left(1 \mathrm{H}\right.$, br dd, $J 16.5$ and $\left.9.5,4-\mathrm{H}^{\mathrm{ax}}\right)$, $2.38\left(1 \mathrm{H}\right.$, br dd, $J 16.5$ and $\left.6,4-\mathrm{H}^{\text {eq }}\right), 3.43\left(2 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}_{2}\right), 4.83(2$ $\left.\mathrm{H}, \mathrm{d}, J 6,11-\mathrm{H}_{2}\right)$ and $6.66(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6,10-\mathrm{H})$ [Found: $(\mathrm{M}+$ H^{+}, 337.201. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{5}$ requires $\left.\mathrm{M}+\mathrm{H}, 337.201\right]$ (Found: C , $67.65 ; \mathrm{H}, 8.5 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.83 ; \mathrm{H}, 8.39 \%$).

Conversion of $\alpha, \boldsymbol{\beta}$-unsaturated ketones 11a ($6 E$-isomer) and 11b ($6 Z$-isomer) into the β, γ-unsaturated ketone 5 (Table 1). General work-up procedure.-The reaction was continued until the peak of the starting material disappeared on analytical

HPLC [LiChrosorb Si $60(5 \mu \mathrm{~m}) 0.4 \times 30 \mathrm{~cm}$; ether-hexane, 1:3]. The yields (see Table 1) of each reaction were calculated by comparison of the chromatogram of diluted solutions of each final reaction mixture with that of a standard solution of compound 5 by analytical HPLC.
(a) Treatment of compound 11a with a silyl vanadate catalyst (entry 1).-A solution ($2.5 \mathrm{~cm}^{3}$) prepared from tris(triphenylsilyl) vanadate (11.3 mg), triphenylsilanol (52.5 mg) and benzoic acid (2.5 mg) in xylenes ($10 \mathrm{~cm}^{3}$) was added to compound $11 \mathrm{a}(105 \mathrm{mg})$ and the mixture was refluxed for 2.5 h .
(b) Treatment of compound 11a with 0.02% iodine in refluxing heptane (entry 2).-A solution of iodine in heptane (0.02%, $\mathrm{w} / \mathrm{v} ; 5 \mathrm{~cm}^{3}$) was added to compound 11a (22 mg) and the mixture was refluxed for 50 min .
(c) Treatment of compound 11b with a silyl vanadate catalyst (entry 3).-A solution ($0.25 \mathrm{~cm}^{3}$) prepared from tris(triphenylsilyl) vanadate (11.3 mg), triphenylsilanol (52.5 mg) and benzoic acid (2.5 mg) in xylenes ($10 \mathrm{~cm}^{3}$) was added to a solution of compound 11 b (10 mg) in xylenes ($3 \mathrm{~cm}^{3}$) and the mixture was refluxed for 6 h .
(d) Treatment of compound 11b with 0.015% iodine in refluxing hexane (entry 4).-A solution of iodine in hexane ($0.015 \%, \mathrm{w} / \mathrm{v} ; 10 \mathrm{~cm}^{3}$) was added to compound $11 \mathrm{~b}(20 \mathrm{mg})$ and the mixture was refluxed for 6 h .
(e) Treatment of compound 11 b with 0.02% iodine in refluxing hexane (entry 5).-A solution of iodine in hexane $(0.02 \%, \mathrm{w} / \mathrm{v}$; $5 \mathrm{~cm}^{3}$) was added to compound $11 \mathrm{~b}(20 \mathrm{mg})$ and the mixture was refluxed for 2 h .
(f) Treatment of compound 11b with 0.02% iodine in refluxing heptane (entry 6).-A solution of iodine in heptane (0.02%, $\mathrm{w} / \mathrm{v} ; 5 \mathrm{~cm}^{3}$) was added to compound $11 \mathrm{~b}(20 \mathrm{mg})$ and the mixture was refluxed for 50 min .
Preparation of the 8-oxo-Wittig salt 6. Aq. $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ (5 cm^{3}) was added to an ice-cooled solution of the β, γ-unsaturated ketone $5(850 \mathrm{mg}, 2.53 \mathrm{mmol})$ in $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . After the reaction had been quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organics were extracted with ether followed by standard work-up to give the crude monoalcohol 14 (740 mg). A solution of $\mathrm{LiCl}(113 \mathrm{mg}$, 2.66 mmol) in dry dimethylformamide (DMF) ($4 \mathrm{~cm}^{3}$) was added to a stirred mixture of the monoalcohol $14(740 \mathrm{mg}, 2.52$ mmol) in 2,4,6-trimethylpyridine (γ-collidine) $\left(0.375 \mathrm{~cm}^{3}, 2.79\right.$ mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . To this reaction mixture was added $\mathrm{MsCl}\left(0.215 \mathrm{~cm}^{3}, 2.78 \mathrm{mmol}\right)$ and stirring of the mixture was continued at $0^{\circ} \mathrm{C}$ for a further 1.5 h . The mixture was poured into ice-water and extracted with ether. The organic layer was washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by short CC (ether-hexane, 3:7) to afford the chloride 15 ($620 \mathrm{mg}, 78 \%$ from 5) as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{OAc})$ and 1680 (conj. CO); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.92$ and 1.00 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.46 (3 $\mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.88(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me})$, $2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.40(2 \mathrm{H}, \mathrm{s}$, $\left.7-\mathrm{H}_{2}\right), 4.25\left(2 \mathrm{H}, \mathrm{d}, J 6,11-\mathrm{H}_{2}\right), 5.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and $6.72(1$ H, br $\mathrm{t}, J 6,10-\mathrm{H}$).
Subsequently, triphenylphosphine ($657 \mathrm{mg}, 2.22 \mathrm{mmol}$) was added to a solution of chloride $15(620 \mathrm{mg}, 1.98 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 19 h . Evaporation of the solvent gave a residue, which was washed with ether to provide the phosphonium chloride 6 (875 $\mathrm{mg}, 60 \%$ from 5) as a solid; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720(\mathrm{OAc})$ and 1680 (conj. CO); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.79$ and 0.90 (each $3 \mathrm{H}, \mathrm{s}$, gemMe), 1.36 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.57 ($3 \mathrm{H}, \mathrm{d}, J 4.5,9-\mathrm{Me}$), 2.03 ($3 \mathrm{H}, \mathrm{s}$, OAc), $3.23\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}_{2}\right), 5.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.26(2 \mathrm{H}, \mathrm{dd}, J$ 16.5 and $\left.8,11-\mathrm{H}_{2}\right), 6.59(1 \mathrm{H}$, br q, $J 8,10-\mathrm{H})$ and $7.66-8.02$ (15 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
($1 R, 3 S, 6 R)$-6-[(E)-5-Hydroxy-3-methylpenta-1,3-dienyl-idene]-1,5,5-trimethylcyclohexane-1,3-diol 3-acetate 17. NaBH_{4}
($323 \mathrm{mg}, 8.5 \mathrm{mmol}$) was added to an ice-cooled solution of the allenic aldehyde $16^{1}(2.48 \mathrm{~g}, 8.49 \mathrm{mmol})$ in $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then poured into icewater. The organics were extracted with ether followed by standard work-up to give a residue, which was purified by short CC (acetone-hexane, 2:5) to afford the allenic alcohol 17 (2.40 $\mathrm{g}, 96 \%$) as plates, $\mathrm{mp} \mathrm{125-128}{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); [$\left.\alpha\right]_{\mathrm{D}}^{27}$ $-15.0(c 1.00, \mathrm{MeOH}) ; \nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600$ and $3450(\mathrm{OH})$, $1938(\mathrm{C}=\mathrm{C}=\mathrm{C})$ and $1725(\mathrm{OAc}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.07,1.35$ and 1.37 (each 3 H , s, gem-Me and 5-Me), ~ 1.38 ($4-\mathrm{H}^{\mathrm{ax}}$), $1.48(1 \mathrm{H}$, t, $\left.J 12,2-\mathrm{H}^{\text {ax }}\right), 1.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.69(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.73(1$ $\mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.98\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}^{\mathrm{eq}}\right), 2.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.27\left(1 \mathrm{H}\right.$, ddd, $J 13,4$ and $\left.2,4-\mathrm{H}^{\text {eq }}\right), 4.28(2 \mathrm{H}$, dd, $J 6$ and $\left.4,11-\mathrm{H}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{brt}, J 6,10-\mathrm{H})$ and $5.97\left(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}\right.$) (Found: C, 69.1; H, 9.0. $\mathrm{C}_{1}{ }_{7} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, 69.36 ; H, 8.90\%).

Preparation of the allenic Wittig salt 8. A solution of LiCl (55 $\mathrm{mg}, 1.29 \mathrm{mmol})$ in dry DMF ($2 \mathrm{~cm}^{3}$) was added to a stirred mixture of the allenic alcohol $17(350 \mathrm{mg}, 1.19 \mathrm{mmol})$ in γ collidine $\left(0.192 \mathrm{~cm}^{3}, 1.43 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . To this reaction mixture was added $\mathrm{MsCl}\left(0.101 \mathrm{~cm}^{3}, 1.30 \mathrm{mmol}\right)$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 1.5 h . The mixture was poured into ice-water and extracted with ether. The organic layer was washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by short CC (ether-hexane, 2:1) to afford the chloride $18(300 \mathrm{mg}, 81 \%)$ as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600$ and $3450(\mathrm{OH}), 1938(\mathrm{C}=\mathrm{C}=\mathrm{C})$ and $1726(\mathrm{OAc}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ 1.07, 1.35 and 1.38 (each 3 H , s, gem-Me and 5-Me), 1.49 (1 H , dd, $J 13$ and $\left.11.5,4-\mathrm{H}^{\mathrm{ax}}\right), 1.74(3 \mathrm{H}, \mathrm{d}, J 1,9-\mathrm{Me}), 2.00(1 \mathrm{H}$, ddd, $J 12.5,4$ and $2,2-\mathrm{H}^{\mathrm{eq}}$), $2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.30(1 \mathrm{H}, \mathrm{ddd}, J$ 13,4 and $2,4-\mathrm{H}^{\mathrm{eq}}$), $4.20\left(2 \mathrm{H}, \mathrm{d}, J 8,11-\mathrm{H}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{tt}, J 11.5$ and $4,3-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8,10-\mathrm{H})$ and $5.98(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$.

Subsequently, triphenylphosphine ($302 \mathrm{mg}, 1.15 \mathrm{mmol}$) and triethylamine ($0.01 \mathrm{~cm}^{3}$) were added to a solution of the chloride 18 ($300 \mathrm{mg}, 0.96 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(4 \mathrm{~cm}^{3}\right)$ and the mixture was heated at $50^{\circ} \mathrm{C}$ for 17 h . Evaporation of the solvent gave a residue, which was washed with ether to provide the phosphonium chloride $8(505 \mathrm{mg}, 74 \%$ from 17) as a pale yellow solid; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600$ and $3450(\mathrm{OH}), 1938(\mathrm{C}=\mathrm{C}=\mathrm{C})$ and $1725(\mathrm{OAc}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.96(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 1.24(3 \mathrm{H}, \mathrm{d}$, $J 4,9-\mathrm{Me}), 1.27$ and 1.32 (each $3 \mathrm{H}, \mathrm{s}, 1$ - and $5-\mathrm{Me}$), $2.01(3 \mathrm{H}, \mathrm{s}$, OAc), 4.74 and 4.91 (each $1 \mathrm{H}, \mathrm{td}, J 16$ and 8, $11-\mathrm{H}_{2}$), 5.23-5.43 $(2 \mathrm{H}, \mathrm{m}, 3-+10-\mathrm{H}), 5.91(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $7.62-7.93(15 \mathrm{H}, \mathrm{m}$, ArH).
($2 E, 4 E, 6 E, 8 E / Z, 10 E$)-13-(4-Hydroxy-2,6,6-trimethylcyclo-hex-1-enyl)-2,7,11-trimethyl-12-oxotrideca-2,4,6,8,10-pentaenal 19 and 20. A solution of the Wittig salt $6(402 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of C_{10}-dialdehyde $7(149 \mathrm{mg}, 0.91 \mathrm{mmol})$ and $\mathrm{NaOMe}(1.0 \mathrm{~mol}$ dm^{-3} in $\left.\mathrm{MeOH} ; 0.84 \mathrm{~cm}^{3}, 0.84 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by standard work-up to give an oil, which was dissolved in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. To this solution was added aq. $5 \% \mathrm{NaOH}$ and the mixture was stirred at room temp. for 15 min . This was diluted with ether and the organic layer was followed by standard work-up to give a residue, which was purified by short CC (ether-hexane, 3:1) followed by PHPLC [LiChrosorb CN $(7 \mu \mathrm{~m}) 1.0 \times 25 \mathrm{~cm}$; MeOH-etherhexane, $1.5: 10: 88.5]$ to provide the all- E-isomer $19(86 \mathrm{mg}$, 32% from 6) and the $11 Z$-one $20(78 \mathrm{mg}, 29 \%$ from 6) as orange solids. Compound 19: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 394$ and 414; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3680$ and $3610(\mathrm{OH}), 1662$ (conj. $\mathrm{CO}+$ conj. $\mathrm{CHO})$ and $1605(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}$), 1.48 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.55 ($1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}$), 1.75 (1 H , ddd, $J 12,3.5$ and $2,2-\mathrm{H}^{\mathrm{eq}}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 2.08 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 2.11 ($1 \mathrm{H}, \mathrm{dd}, J 16.5$ and 9,
$\left.4-\mathrm{H}^{\text {ax }}\right), 2.35\left(1 \mathrm{H}\right.$, br dd, $J 16.5$ and $\left.6,4-\mathrm{H}^{\text {eq }}\right), 3.44$ and $3.49($ each $\left.1 \mathrm{H}, \mathrm{d}, J 17.5,7-\mathrm{H}_{2}\right), 4.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.43(1 \mathrm{H}$, br d, $J 11.5$, $14-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 15$ and 10.5 , $11-$ H), $6.78\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.11.5,15^{\prime}-\mathrm{H}\right), 6.97(1 \mathrm{H}$, br d, $J 11.5$, $\left.14^{\prime}-\mathrm{H}\right), 7.04(1 \mathrm{H}$, dd, $J 14.5$ and $11.5,15-\mathrm{H}), 7.22(1 \mathrm{H}$, dd-like, $J 10.5$ and $1,10-\mathrm{H}$) and $9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: M^{+}, 382.250. $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3}$ requires $\mathrm{M}, 382.251$).

Compound 20: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 289,393$ and 408sh; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3680$ and $3600(\mathrm{OH}), 1675$ (conj. $\mathrm{CO}+$ conj. $\mathrm{CHO})$ and $1608(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.92\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.96$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}$), 1.49 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right)$, $1.73\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}^{\mathrm{eq}}\right)$, $1.88\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 1.97$ ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $2.10\left(1 \mathrm{H}\right.$, dd, $J 16.5$ and $\left.9,4-\mathrm{H}^{\mathrm{ax}}\right), 2.18(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 2.34\left(1 \mathrm{H}\right.$, br dd, $J 16.5$ and $\left.5.5,4-\mathrm{H}^{\mathrm{eq}}\right), 3.39$ and 3.46 (each $\left.1 \mathrm{H}, \mathrm{d}, J 18,7-\mathrm{H}_{2}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.34(1 \mathrm{H}, \mathrm{d}, J 11.5$, $12-\mathrm{H}), 6.41(1 \mathrm{H}, \operatorname{br~d}, J 11.5,14-\mathrm{H}), 6.46(1 \mathrm{H}, \mathrm{t}, J 11.5,11-\mathrm{H})$, $6.75\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.11.5,15^{\prime}-\mathrm{H}\right), 6.97\left(1 \mathrm{H}\right.$, br d, $J 11.5,14^{\prime}-$ H), $7.00(1 \mathrm{H}$, dd, $J 14.5$ and $11.5,15-\mathrm{H}), 7.69(1 \mathrm{H}$, br d, $J 11.5$, $10-\mathrm{H})$ and $9.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 382.251$).

Isomerization of the $11 Z$-isomer 20. A solution ($3 \mathrm{~cm}^{3}$) prepared from $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(65 \mathrm{mg})$, triethylamine (0.035 cm^{3}) and water ($6 \mathrm{~cm}^{3}$) in $\mathrm{MeCN}\left(50 \mathrm{~cm}^{3}\right)$ was added to a solution of compound $20(120 \mathrm{mg})$ in $\mathrm{MeCN}\left(25 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. until the peak of compound 20 disappeared ($\sim 2.5 \mathrm{~h}$) on analytical HPLC [LiChrospher CN $(5 \mu \mathrm{~m}) 0.4 \times 25 \mathrm{~cm} ; \mathrm{MeOH}$-ether-hexane, $1.5: 10: 88.5]$. HPLC analysis of the final reaction mixture indicated a 94% yield of the all- E-isomer 19. The solvent was evaporated off to give a residue, which was purified by short CC (ether-hexane, $3: 1)$ to afford compound 19 ($104 \mathrm{mg}, 87 \%$).

Preparation of the all-E-apocarotenal 19 from the Wittig salt 6 without separation of the isomers 19 and 20 . In the same manner as described for the preparation of apocarotenals 19 and $\mathbf{2 0}$, Wittig reaction between the phosphonium chloride $6(1.15 \mathrm{~g}, 2.0$ mmol) and the dialdehyde $7(426 \mathrm{mg}, 2.6 \mathrm{mmol})$ followed by hydrolysis gave a crude mixture of apocarotenals 19 and 20 (630 $\mathrm{mg}, 82 \%$ from 6), which was treated with the palladium catalyst in the same manner as that in isomerization of 11Z-isomer 20 to provide the all- E-isomer 19 ($586 \mathrm{mg}, 77 \%$ from 6).
(2E,4E,6E,8E,10E)-2,7,11-Trimethyl-12-oxo-13-[2,6,6-tri-methyl-4-(triethylsiloxy)cyclohex-1-enyl]trideca-2,4,6,8,10-
pentaenal 21. TES triflate $\left(0.218 \mathrm{~cm}^{3}, 0.96 \mathrm{mmol}\right)$ was added slowly to a stirred solution of the apocarotenal $19(335 \mathrm{mg}, 0.88$ mmol) and γ-collidine ($0.23 \mathrm{~cm}^{3}, 1.74 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for a further 10 min . The mixture was poured into ice-water and extracted with ether followed by standard work-up to give a residue, which was purified by short CC (ether-hexane, 3:5) to afford the TES ether $21(320 \mathrm{mg}, 79 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 394$ and 413; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1665$ (conj. $\mathrm{CO}+$ conj. CHO) and 1606 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.59\left(6 \mathrm{H}, \mathrm{q}, J 8, \mathrm{SiCH}_{2} \mathrm{Me} \times 3\right), 0.94$ and 0.97 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $0.97\left(9 \mathrm{H}, \mathrm{t}, J 8, \mathrm{SiCH}_{2} \mathrm{Me} \times 3\right.$), 1.46 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.91 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $2.08(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 3.40$ and 3.52 (each $\left.1 \mathrm{H}, \mathrm{d}, J 18,7-\mathrm{H}_{2}\right), 3.98$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.44(1 \mathrm{H}$, br d, $J 11.5,14-\mathrm{H}), 6.60-6.86(3 \mathrm{H}, \mathrm{m}$, $\left.11-+12-+15^{\prime}-\mathrm{H}\right), 6.99\left(1 \mathrm{H}\right.$, br d, $\left.J 11.5,14^{\prime}-\mathrm{H}\right), 7.06(1 \mathrm{H}$, dd, $J 14.5$ and $11.5,15-\mathrm{H}), 7.24(1 \mathrm{H}$, br d, $J 10,10-\mathrm{H})$ and 9.50 $(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 496.338 . \mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{3}$ Si requires M , 496.337).

Preparation of the fucoxanthin skeletal compounds 3 and 22. A solution of $\mathrm{NaOMe}\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in $\mathrm{MeOH} ; 2.8 \mathrm{~cm}^{3}, 2.8$ mmol) was added to an ice-cooled solution of the Wittig salt 8 $(825 \mathrm{mg}, 1.44 \mathrm{mmol})$ and the TES ether $21(220 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. After being stirred at room temp. for 1.5 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was followed by standard work-up to give an oil, which was dissolved in pyridine (Py) $\left(11 \mathrm{~cm}^{3}\right)$ and acetic anhydride (3 cm^{3}). The mixture was stirred at room temp. for 15 h , poured
into ice-water, and extracted with ether. The extracts were washed successively with aq. $3 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetone-hexane, 5:95) to afford a mixture of the TES ethers of skeletal compounds 3 and $22(300 \mathrm{mg}, 89 \%$ from 21). A solution of acetic acid [1.0 mol dm^{-3} in tetrahydrofuran (THF); $\left.1.2 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}\right]$ and a solution of TBAF ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $1.2 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}$) was added to a solution of the above mixture ($300 \mathrm{mg}, 0.40$ mmol) in THF ($2 \mathrm{~cm}^{3}$) and the mixture was stirred at room temp. for 1 h . This was diluted with ether and the organic layer was washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solvent gave a residue, which was purified by short CC (acetone-hexane, $3: 7$) followed by PHPLC (CHEMCOSORB 7-ODS-H, $1.0 \times 30 \mathrm{~cm}$; MeOHwater, $95: 5$) to provide the all- E-isomer $3(63 \mathrm{mg}, 22 \%$ from 21) and the $11^{\prime} Z$-one $22(78 \mathrm{mg}, 27 \%$ from 21) as red solids.

Compound 3: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 266,447$ and $466 \mathrm{sh} ; \lambda_{\max }{ }^{-}$ (hexane) $/ \mathrm{nm} 263,421,444$ and $472 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600(\mathrm{OH})$, $1932(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1735(\mathrm{OAc}), 1650(\mathrm{conj} . \mathrm{CO})$ and $1610(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{Me}^{\mathrm{eq}}$), $1.35\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.41$ $\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.48(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.51(1 \mathrm{H}, \mathrm{t}$-like, $J 12.5$, $\left.4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.74(1 \mathrm{H}$, ddd, $J 12,4$ and 2.5 , $2-\mathrm{H}^{\mathrm{eq}}$), 1.81 ($3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}$), 1.97 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-$ $\mathrm{Me}), 1.99\left(2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.11$ (1 H , br dd, $J 17$ and $9,4-\mathrm{H}^{\text {ax }}$), 2.29 (1 H , ddd, $J 13,4.5$ and $2,4^{\prime}-$ $\left.\mathrm{H}^{\mathrm{eq}}\right), 2.34\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5,4-\mathrm{H}^{\text {eq }}\right), 3.43$ and 3.49 (each 1 $\left.\mathrm{H}, \mathrm{d}, J 17.5,7-\mathrm{H}_{2}\right), 4.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.38(1 \mathrm{H}, \mathrm{tt}, J 12$ and $\left.4.5,3^{\prime}-\mathrm{H}\right), 6.06\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 6.13(1 \mathrm{H}$, dd-like, $J 11.5$ and 1 , $\left.10^{\prime}-\mathrm{H}\right), 6.27\left(1 \mathrm{H}\right.$, br d, $\left.J 11.5,14^{\prime}-\mathrm{H}\right), 6.35\left(1 \mathrm{H}, \mathrm{d}, J 15,12^{\prime}-\mathrm{H}\right)$, $6.40(1 \mathrm{H}$, br d, $J 11.5,14-\mathrm{H}), 6.59\left(1 \mathrm{H}\right.$, dd, $J 15$ and $11.5,11^{\prime}-$ H), $6.60(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11,11-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $11.5,15-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.11.5,15^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H})$ (Found: M^{+}, 642.426. $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{5}$ requires $\mathrm{M}, 642.428$).

Compound 22: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 268,332,445$ and 465 sh ; $\lambda_{\text {max }}($ hexane $) / \mathrm{nm} 227,315,328,421 \mathrm{sh}, 442$ and 471; $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3460(\mathrm{OH}), 1930(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1739$ and 1725 (split) (OAc), 1660 (conj. CO) and $1610(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$ $0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.08\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right)$, 1.36 ($3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}$), 1.39 ($3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}$), 1.41 ($1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-$ $\left.\mathrm{H}^{\mathrm{ax}}\right), 1.48(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.51\left(1 \mathrm{H}, \mathrm{t}\right.$-like, $\left.J 12.5,4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.55(1$ $\left.\mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.74\left(1 \mathrm{H}, \mathrm{ddd}, J 12,4\right.$ and $\left.2.5,2-\mathrm{H}^{\mathrm{eq}}\right), 1.79$ (3 H, s, $\left.9^{\prime}-\mathrm{Me}\right), 1.97(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.98\left(2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, 13-$ Me), $2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.11\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.9,4-\mathrm{H}^{\mathrm{ax}}\right), 2.12$ $\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 2.29\left(1 \mathrm{H}\right.$, ddd, $J 13,4$ and $\left.2,4^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 2.34(1 \mathrm{H}$, br dd, $J 17$ and $5,4-\mathrm{H}^{\text {eq }}$), 3.43 and 3.49 (each $1 \mathrm{H}, \mathrm{d}, J 17.5,7-$ $\left.\mathrm{H}_{2}\right), 4.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.38\left(1 \mathrm{H}, \mathrm{tt}, J 12\right.$ and $\left.4,3^{\prime}-\mathrm{H}\right), 5.98(1$ $\left.\mathrm{H}, \mathrm{d}, J 12,12^{\prime}-\mathrm{H}\right), 6.07\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 6.27\left(1 \mathrm{H}, \mathrm{t}, J 12,11^{\prime}-\mathrm{H}\right)$, $6.32\left(1 \mathrm{H}\right.$, br d, $\left.J 11,14^{\prime}-\mathrm{H}\right), 6.40(1 \mathrm{H}$, br d, $J 11,14-\mathrm{H}), 6.61(1$ $\mathrm{H}, \mathrm{dd}, J 15$ and $11,11-\mathrm{H}), 6.63\left(1 \mathrm{H}\right.$, br d, $\left.J 12,10^{\prime}-\mathrm{H}\right), 6.65(1$ $\mathrm{H}, \mathrm{dd}, J 15$ and $11,15-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.71(1 \mathrm{H}$, dd, $J 15$ and $\left.11,15^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 642.427$).

Isomerization of the $11^{\prime} \boldsymbol{Z}$-isomer 22 . In the same manner as described for the isomerization of the $11 Z$-apocarotenal 20 , compound $22(33 \mathrm{mg})$ was treated with the palladium catalyst (1.5 h) and purified by PHPLC (CHEMCOSORB 7-ODS-H, $1.0 \times 30 \mathrm{~cm} ; \mathrm{MeOH}$-water, $95: 5$) to provide the skeletal compound 3 ($15 \mathrm{mg}, 45 \%$).

Preparation of optically active fucoxanthin 1. A solution of MCPBA ($13.3 \mathrm{mg}, 0.077 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added to a cooled solution of the skeletal compound $3(45 \mathrm{mg}, 0.070$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. After being stirred at $0^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with aq. $1 \% \quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine. Evaporation of the dried solvent gave a residue, which was purified by

PHPLC (CHEMCOSORB 7-ODS-H, $1.0 \times 30 \mathrm{~cm}$; MeOHwater, 93:7) to provide the epoxide mixture (1:23~2:7) (16 $\mathrm{mg}, 36 \%$) as a red solid and recovered starting material (12 mg , 27%). PHPLC separation (CHIRALCEL OD; DAICEL IND., Ltd., $1.0 \times 25 \mathrm{~cm}$; EtOH-hexane, $15: 85 ; 37^{\circ} \mathrm{C}$) of the mixture provided the syn-epoxide 23 and the anti-epoxide (fucoxanthin) 1, each in pure form. Spectral properties of the synthetic fucoxanthin 1 were in accord with those of a natural specimen. ${ }^{12 .}{ }^{1 /}$

Compound 1: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \quad 266,449$ and 467 sh ; $\lambda_{\text {max }}$ (hexane)/nm 264, 426, 448 and 477; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440$ $(\mathrm{OH}), 1929(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1734(\mathrm{OAc}), 1658$ (conj. CO) and 1608 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.96\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right.$), $1.04\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right)$, $1.07\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right), 1.22(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $\sim 1.35\left(2-\mathrm{H}^{\mathrm{ax}}\right), 1.35(3$ $\left.\mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.41\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right)$, $\sim 1.49\left(2-\mathrm{H}^{\mathrm{eq}}\right), 1.51\left(1 \mathrm{H}, \mathrm{t}, J 13,4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.79(1 \mathrm{H}, \mathrm{dd}, J 14$ and 9, 4- ${ }^{\mathrm{ax}}$), 1.82 ($3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}$), 1.95 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $1.99(6 \mathrm{H}, \mathrm{s}$, $\left.13-+13^{\prime}-\mathrm{Me}\right), \sim 2.00\left(2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.29(1 \mathrm{H}$, ddd, $J 13,4$ and $\left.2,4^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 2.32\left(1 \mathrm{H}\right.$, br dd, $J 14$ and $4.5,4-\mathrm{H}^{\text {eq }}$), 2.60 and 3.66 (each $1 \mathrm{H}, \mathrm{d}, J 18,7-\mathrm{H}_{2}$), $3.82(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.38$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.06\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 6.13(1 \mathrm{H}$, dd-like, $J 11$ and 1 , $\left.10^{\prime}-\mathrm{H}\right), 6.27\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.5,14^{\prime}-\mathrm{H}\right), 6.35\left(1 \mathrm{H}, \mathrm{d}, J 15,12^{\prime}-\mathrm{H}\right)$, $6.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.5,14-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11,11-\mathrm{H})$, $6.60\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.11,11^{\prime}-\mathrm{H}\right), 6.64(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 11.5 , $15-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 11.5 , $\left.15^{\prime}-\mathrm{H}\right)$ and $7.15(1 \mathrm{H}$, br d, $J 11,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 658.420$. $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{6}$ requires $\mathrm{M}, 658.423$).

Compound 23: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ 266, 450 and 467 sh ; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 264,427,449$ and $478 ; \nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440$ $(\mathrm{OH}), 1929(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1734(\mathrm{OAc}), 1657$ (conj. CO) and 1609 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.94\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.07\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right)$, $1.10\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right)$, $1.22(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.32(1 \mathrm{H}$, ddd, $J 13$, 3.5 and $1,2-\mathrm{H}^{\mathrm{eq}}$), $1.35\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.41$ $\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.51\left(1 \mathrm{H}, \mathrm{t}, J 12,4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.54(1 \mathrm{H}, \mathrm{dd}, J$ 13 and $\left.10,2-\mathrm{H}^{\mathrm{ax}}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}\right), 1.88(1 \mathrm{H}, \mathrm{dd}, J 15$ and 8 , $4-\mathrm{H}^{\mathrm{ax}}$), 1.94 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.99 (1 H , ddd, $J 12,4$ and $2,2^{\prime}-\mathrm{H}^{\mathrm{eq}}$), $1.99\left(6 \mathrm{H}, \mathrm{s}, 13-+13^{\prime}-\mathrm{Me}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.23(1 \mathrm{H}$, ddd, J 15,6 and $1,4-\mathrm{H}^{\text {eq }}$), $2.29\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2,4^{\prime}-\mathrm{H}^{\text {eq }}\right), 2.72$ and 3.57 (each $1 \mathrm{H}, \mathrm{d}, J 18.5,7-\mathrm{H}_{2}$), $3.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.38$ (1 $\mathrm{H}, \mathrm{tt}, J 12$ and $\left.4,3^{\prime}-\mathrm{H}\right), 6.06\left(1 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{H}\right), 6.13(1 \mathrm{H}$, dd-like, J 11 and $\left.1,10^{\prime}-\mathrm{H}\right), 6.27\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12,14^{\prime}-\mathrm{H}\right), 6.35(1 \mathrm{H}, \mathrm{d}, J 15$, $\left.12^{\prime}-\mathrm{H}\right), 6.41(1 \mathrm{H}, \mathrm{brd}, J 11.5,14-\mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{dd}, J 15$ and 11 , $11-\mathrm{H}), 6.60\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.11,11^{\prime}-\mathrm{H}\right), 6.64(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $11.5,15-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.12,15^{\prime}-\mathrm{H}\right)$ and $7.14(1 \mathrm{H}$, dd-like, $J 11$ and $1.5,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 658.421$).

Synthesis of halocynthiaxanthin 2

($1 R$)-4-(5-Hydroxy-3-methylpent-3-en-1-ynyl)-3,5,5-tri-

 methylcyclohex-3-enol 25. Aq. $10 \% \mathrm{KOH}\left(25 \mathrm{~cm}^{3}\right)$ was added to an ice-cooled solution of the acetylenic diacetate $24^{9}(3.10 \mathrm{~g}$, $9.75 \mathrm{mmol})$ in $\mathrm{MeOH}\left(60 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The mixture was extracted with ether followed by standard work-up to give a residue, which was purified by short CC (acetone-hexane, 3:7) to afford the $\operatorname{diol} 25(2.12 \mathrm{~g}, 93 \%$) as crystals, mp $89-91^{\circ} \mathrm{C}$ (from ether) (lit., ${ }^{8} 92-93^{\circ} \mathrm{C}$). Spectral properties of compound 25 were identical with those reported ${ }^{8,15}[\alpha]_{\mathrm{D}}^{28}-106.0\left(c 0.50\right.$, dioxane) $\left\{\right.$ lit. ${ }^{8}{ }^{8}[\alpha]_{\mathrm{D}}^{20}-105.4$ (c 0.50, 1,4-dioxane) \}; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610$ and $3450(\mathrm{OH})$, $2187(\mathrm{C} \equiv \mathrm{C})$ and $1616(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.13$ and 1.18 (each 3 H, s, gem-Me), $1.44\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right.$), 1.82 (1 H , ddd, $J 12,3.5$ and $2,2-\mathrm{H}^{\mathrm{eq}}$), 1.89 and 1.90 (each $3 \mathrm{H}, \mathrm{s}, 5-$ and $9-\mathrm{Me}$), 2.05 (1 H , br dd, $J 18$ and $\left.9.5,4-\mathrm{H}^{\text {ax }}\right), 2.41(1 \mathrm{H}$, br dd, $J 18$ and $5.5,4-$- This was kindly supplied by Professor Y. Koyama, Kwansei Gakuin University, and Professor K. Tsujimoto, Japan Advanced Institute of Science and Technology, Hokuriku.
$\left.\mathrm{H}^{\text {eq }}\right)$, $3.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.25\left(2 \mathrm{H}, \mathrm{d}, J 7,11-\mathrm{H}_{2}\right)$ and $5.97(1 \mathrm{H}$, td, $J 7$ and 1, $10-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 234.162 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires M, 234.162) (Found: C, 75.15; H, 9.3. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$ requires C, $75.43 ; \mathrm{H}, 9.49 \%$).

Preparation of the halocynthiaxanthin skeletal compounds 4 and 26. A solution of $\mathrm{NaOMe}\left(1.0 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{MeOH} ; 1.02$ $\mathrm{cm}^{3}, 1.02 \mathrm{mmol}$) was added to an ice-cooled solution of the Wittig salt $9^{8}(350 \mathrm{mg}, 0.68 \mathrm{mmol})$ and the apocarotenal 19 (173 $\mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(17 \mathrm{~cm}^{3}\right)$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , the reaction mixture was diluted with ether followed by standard work-up to give an oil, which was purified by short CC (acetone-hexane, 3:7) to afford an isomeric mixture (244 $\mathrm{mg}, 93 \%$; all- $E: 9^{\prime} Z: 11^{\prime} Z: 9^{\prime} Z, 11^{\prime} Z \sim 4: 2: 2: 1$) of skeletal compounds. Purification of a part of the isomeric mixture by PHPLC (CHEMCOSORB 7-ODS-H, $1.0 \times 30 \mathrm{~cm}$; MeOH) followed by PHPLC [LiChrosorb Si $60(7 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; $\mathrm{MeOH}-\mathrm{THF}$-hexane, $1: 40: 59]$ provided each pure isomer. In the same manner as described for the isomerization of the $11 Z$ apocarotenal 20, the isomeric mixture was treated with the palladium catalyst (4 h) and purified by PHPLC (CHEMCOSORB 7-ODS-H, $1.0 \times 30 \mathrm{~cm}$; MeOH) to give the all- $E-$ isomer 4 ($93 \mathrm{mg}, 35 \%$ from 19) and the $9^{\prime} Z$-one $26(87 \mathrm{mg}, 33 \%$ from 19) as red solids.
All-E-isomer 4: $\quad \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 278,450$ and 470sh; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 276,420 \mathrm{sh}, 448$ and $475 ; \nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3430$ $(\mathrm{OH}), 2190(\mathrm{C} \equiv \mathrm{C}), 1655$ (conj. CO), 1610 and $1578(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.15(3$ $\left.\mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right)$, $1.46\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right)$, $1.48(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.74(1 \mathrm{H}$, ddd, J $12,3.5$ and $\left.2,2-\mathrm{H}^{\mathrm{eq}}\right), 1.84\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $2,2^{\prime}-\mathrm{H}^{\mathrm{eq}}$), 1.93 ($3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}$), 1.97 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.98 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), 2.01 ($3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}$), 2.02 ($3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}$), 2.07 (1 H, br dd, $J 17$ and $\left.9,4^{\prime}-\mathrm{H}^{\text {ax }}\right), 2.11\left(1 \mathrm{H}\right.$, br dd, $J 16$ and $\left.9,4-\mathrm{H}^{\mathrm{ax}}\right), 2.34(1 \mathrm{H}, \mathrm{br}$ dd, $J 16$ and $\left.5,4-\mathrm{H}^{\text {eq }}\right), 2.43\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.6,4^{\prime}-\mathrm{H}^{\text {eq }}\right), 3.43$ and 3.49 (each $\left.1 \mathrm{H}, \mathrm{d}, J 17.5,7-\mathrm{H}_{2}\right), 4.00\left(2 \mathrm{H}, \mathrm{m}, 3-+3^{\prime}-\mathrm{H}\right)$, $6.29\left(1 \mathrm{H}\right.$, br d, $\left.J 11,14^{\prime}-\mathrm{H}\right), 6.36\left(1 \mathrm{H}, \mathrm{d}, J 15,12^{\prime}-\mathrm{H}\right), 6.40(1 \mathrm{H}$, br d, $J 11,14-\mathrm{H}), 6.46\left(1 \mathrm{H}\right.$, dd-like, $J 11$ and $\left.1,10^{\prime}-\mathrm{H}\right), 6.56$ (1 $\mathrm{H}, \mathrm{dd}, J 15$ and $\left.11,11^{\prime}-\mathrm{H}\right), 6.63(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11,11-\mathrm{H})$, $6.65(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $11,15-\mathrm{H})$, $6.68(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H})$, $6.73\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.11,15^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 582.406 . \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{3}$ requires M , 582.407).

9'Z-Isomer 26: $\lambda_{\text {max }}($ EtOH $) / \mathrm{nm} 241,279,340,446$ and 470sh; $\lambda_{\text {max }}$ (hexane)/nm 239, 276, 339, 420sh, 444 and 472; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320(\mathrm{OH}), 2190(\mathrm{C} \equiv \mathrm{C}), 1655$ (conj. CO), 1610 and $1578(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}^{\mathrm{ax}}$), $1.19\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right), 1.48(3 \mathrm{H}$, $\mathrm{s}, 5-\mathrm{Me}), 1.49\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.74$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\mathrm{eq}}\right), 1.86\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 1.95,1.97,1.98,2.00$ and 2.01 (each 3 H , each s, $5^{\prime}-, 9-, 9^{\prime}-, 13$ - and $\left.13^{\prime}-\mathrm{Me}\right), 2.09(2 \mathrm{H}, \mathrm{m}$, $\left.4-+4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 2.34\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5,4-\mathrm{H}^{\mathrm{eq}}\right), 2.46(1 \mathrm{H}, \mathrm{br}$ dd, $J 17$ and $5,4^{\prime}-\mathrm{H}^{\mathrm{eq}}$), 3.43 and 3.49 (each $1 \mathrm{H}, \mathrm{d}, J 17.5,7-\mathrm{H}_{2}$), $4.00\left(2 \mathrm{H}, \mathrm{m}, 3-+3^{\prime}-\mathrm{H}\right), 6.28\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J 11.5,14^{\prime}-\mathrm{H}\right), 6.31$ (1 H , br d, $\left.J 11.5,10^{\prime}-\mathrm{H}\right), 6.36\left(1 \mathrm{H}, \mathrm{d}, J 15,12^{\prime}-\mathrm{H}\right), 6.40(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 11,14-\mathrm{H}), 6.60(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11,11-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{dd}, J 14$ and $11,15-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, J 14$ and $\left.11.5,15^{\prime}-\mathrm{H}\right), 6.87\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.11.5,11^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 582.407$).

11'Z-Isomer of 4: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 279,340,448$ and 475 sh ; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 276,340,445$ and $475 \mathrm{sh} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400$ (OH), $2190(\mathrm{C} \equiv \mathrm{C}), 1655$ (conj. CO), 1610, 1570 and 1560 (split) $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right)$, $1.15\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right), 1.46\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\right.$ $\left.\mathrm{H}^{\mathrm{ax}}\right)$, $1.48(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.54\left(3 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.74(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}^{\text {eq }}\right), 1.84\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 1.92(3 \mathrm{H}, \mathrm{s}$, $\left.5^{\prime}-\mathrm{Me}\right), 1.97$ ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.99 ($3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}$), 2.00 ($3 \mathrm{H}, \mathrm{s}, 13-$ $\mathrm{Me}), 2.10\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 2.04-2.14\left(2 \mathrm{H}, \mathrm{m}, 4-+4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 2.34$ $\left(1 \mathrm{H}\right.$, br dd, $J 16$ and $\left.5.5,4-\mathrm{H}^{\mathrm{eq}}\right), 2.43(1 \mathrm{H}$, ddd, $J 17.5,5$ and 1 ,
$\left.4^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 3.43$ and 3.49 (each $\left.1 \mathrm{H}, \mathrm{d}, J 17.5,7-\mathrm{H}_{2}\right), 4.00(2 \mathrm{H}, \mathrm{m}$, $\left.3-+3^{\prime}-\mathrm{H}\right), 5.99\left(1 \mathrm{H}, \mathrm{d}, J 12.5,12^{\prime}-\mathrm{H}\right), 6.24\left(1 \mathrm{H}, \mathrm{t}, J 12.5,11^{\prime}-\right.$ H), $6.33\left(1 \mathrm{H}\right.$, br d, $\left.J 10.5,14^{\prime}-\mathrm{H}\right), 6.40(1 \mathrm{H}$, br d, $J 10,14-\mathrm{H})$, $6.61(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $11,11-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 10 , $15-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J 14.5,12-\mathrm{H}), 6.70(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 10.5 , $\left.15^{\prime}-\mathrm{H}\right), 6.97\left(1 \mathrm{H}\right.$, br d, $\left.J 12.5,10^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 582.407$).
$9^{\prime} \mathrm{Z}, 11^{\prime} \mathrm{Z}$-Isomer of 4: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \mathrm{241}, \mathrm{281,340,444} \mathrm{and}$ 470sh; $\lambda_{\text {max }}$ (hexane)/nm 239, 278, 339, 419sh, 442 and 470 ; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 2190(\mathrm{C} \equiv \mathrm{C}), 1655$ (conj. CO), 1610 and $1580(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.93\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 0.99(3 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{Me}^{\mathrm{ax}}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}\right), 1.23\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}\right), 1.48(1 \mathrm{H}$, $\left.\mathrm{t}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.48(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.74$ $\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\mathrm{eq}}\right), 1.85\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right), 1.97$ ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $\sim 2.00\left(4-4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 2.03(3$ $\left.\mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 2.34(1 \mathrm{H}$, br dd, $J 15.5$ and 5 , $\left.4-\mathrm{H}^{\text {eq }}\right), 2.45\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5.5,4^{\prime}-\mathrm{H}^{\text {eq }}\right), 3.43$ and 3.49 (each $\left.1 \mathrm{H}, \mathrm{d}, J 17.5,7-\mathrm{H}_{2}\right), 4.00\left(2 \mathrm{H}, \mathrm{m}, 3-+3^{\prime}-\mathrm{H}\right), 5.98(1 \mathrm{H}$, d, $\left.J 12,12^{\prime}-\mathrm{H}\right), 6.30\left(1 \mathrm{H}\right.$, br d, $\left.J 10.5,14^{\prime}-\mathrm{H}\right), 6.40(1 \mathrm{H}, \mathrm{d}, J$ $10.5,14-\mathrm{H}), 6.53\left(1 \mathrm{H}, \mathrm{t}, J 12,11^{\prime}-\mathrm{H}\right), 6.61(1 \mathrm{H}, \mathrm{dd}, J 15$ and $10.5,11-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{dd}, J 15$ and $10.5,15-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{d}, J$ $15,12-\mathrm{H}), 6.70\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.10.5,15^{\prime}-\mathrm{H}\right), 6.80(1 \mathrm{H}$, br d, $\left.J 12,10^{\prime}-\mathrm{H}\right)$ and $7.23(1 \mathrm{H}$, br d, $J 10.5,10-\mathrm{H})$ (Found: M^{+}, 582.406).
(2E)-5-[(4R)-4-Hydroxy-2,6,6-trimethylcyclohex-l-enyl]-3-methylpent-2-en-4-ynal 28 . A solution of the diol $25(2.12 \mathrm{~g}, 9.06$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was shaken with active $\mathrm{MnO}_{2}(40 \mathrm{~g})$ at room temp. for 15 h . The mixture was filtered through Celite. Evaporation of the filtrate gave an oil, which was purified by short CC (acetone-hexane, 1:4) to give the acetylenic aldehyde $28(1.83 \mathrm{~g}, 87 \%)$ as a yellow solid; $[\alpha]_{\mathrm{D}}^{26}-86.5(c 0.96, \mathrm{MeOH})$; $\hat{\lambda}_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 221,287$ and 327; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3606$ and $3463(\mathrm{OH}), 2177(\mathrm{C}=\mathrm{C}), 1661(\mathrm{conj} . \mathrm{CHO})$ and $1589(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.13$ and 1.19 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.46(1 \mathrm{H}, \mathrm{t}, J$ $\left.12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.85\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.1.5,2-\mathrm{H}^{\text {eq }}\right), 1.93(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 2.09\left(1 \mathrm{H}\right.$, br dd, $J 18$ and $\left.10,4-\mathrm{H}^{\mathrm{ax}}\right), 2.34(3 \mathrm{H}, \mathrm{d}, J 1,9-$ Me), $2.47\left(1 \mathrm{H}\right.$, br dd, $J 18$ and $\left.5,4-\mathrm{H}^{\mathrm{eq}}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $6.20(1 \mathrm{H}$, br d, $J 8,10-\mathrm{H})$ and $10.03(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 232.146 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{M}, 232.146$).
$(2 E, 4 E, 6 E, 8 E, 10 E, 2 E, 4 E, 6 E, 8 Z, 10 E$ and $2 E, 4 E, 6 Z, 8 E, 10 E)-$ 13-[(4R)-4-Hydroxy-2,6,6-trimethylcyclohex-1-enyl]-2,7,11-tri-methyltrideca-2,4,6,8,10-penten-12-ynal 31, 32 and 33. An acidic solution $\left(0.23 \mathrm{~cm}^{3}\right)$ prepared from PTSA (500 mg) and $\mathrm{H}_{3} \mathrm{PO}_{4}(725 \mathrm{mg})$ in $\mathrm{MeOH}\left(37.5 \mathrm{~cm}^{3}\right)$ and trimethyl orthoformate $\left(0.23 \mathrm{~cm}^{3}, 2.1 \mathrm{mmol}\right)$ were added to a solution of the Wittig salt $29^{13}(250 \mathrm{mg}, 0.56 \mathrm{mmol})$ in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temp. for 1 h and neutralized with NaOMe until just before the red colour of an ylide appeared to give a solution of the Wittig salt 30 . To this solution was added a solution of the acetylenic aldehyde $28(86 \mathrm{mg}, 0.37$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and a solution of $\mathrm{NaOMe}(1.0 \mathrm{~mol}$ dm^{-3} in $\mathrm{MeOH} ; 0.84 \mathrm{~cm}^{3}, 0.84 \mathrm{mmol}$), successively. After being stirred at room temp. for 30 min , the mixture was poured into ice-water and extracted with ether. The extracts were shaken with aq. $3 \% \mathrm{HCl}$ until the fine structure disappeared on UV and washed successively with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts provided a residue, which was purified by short CC (ether-hexane, $3: 1$) followed by PHPLC [LiChrosorb Si $60(7 \mu \mathrm{~m}) 1.0 \times 30 \mathrm{~cm}$; acetone-hexane, 15:85] to afford the all- E-isomer 31 ($42 \mathrm{mg}, 31 \%$), the $11 Z$-one 32 (26 $\mathrm{mg}, 17 \%$) and the $13 Z$-one $33(12 \mathrm{mg}, 9 \%)$ as orange solids.

Compound 31: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 421 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420$ $(\mathrm{OH}), 2200(\mathrm{C}=\mathrm{C}), 1667$ (conj. CHO), 1615 and 1600 (split) and $1550(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.15\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.20(3 \mathrm{H}, \mathrm{s}, 1-$ $\left.\mathrm{Me}^{\mathrm{eq}}\right), 1.46\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}^{\mathrm{ax}}\right), 1.84(1 \mathrm{H}$, br dd, $J 12.5$ and $\left.3.5,2-\mathrm{H}^{\mathrm{eq}}\right), 1.89\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 1.93(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.03(6 \mathrm{H}$, s, $9-+13-\mathrm{Me}$), 2.07 (1 H , ddd-like, $J 17.5,9.5$ and $1,4-\mathrm{H}^{\text {ax }}$), $2.43\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $\left.5.5,4-\mathrm{H}^{\mathrm{eq}}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.32$
(1 H, br d, $J 11.5,14-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.47(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, J 11.5,10-\mathrm{H}), 6.66(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,11-\mathrm{H}), 6.70(1 \mathrm{H}$, dd, $J 15$ and $\left.11.5,15^{\prime}-\mathrm{H}\right), 6.96\left(1 \mathrm{H}\right.$, br d, $\left.J 11.5,14^{\prime}-\mathrm{H}\right), 7.02$ ($1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,15-\mathrm{H}$) and $9.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 364.241 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{M}, 364.240$).

Compound 32: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 307$ and $419 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3400(\mathrm{OH}), 2190(\mathrm{C} \equiv \mathrm{C}), 1660($ conj. CHO $), 1610,1570$ and 1550 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.14\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\text {eq }}\right)$, $1.46\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}^{\mathrm{ax}}\right), 1.84(1 \mathrm{H}$, ddd, $J 12.5,4$ and $2,2-$ $\left.\mathrm{H}^{\text {eq }}\right), 1.88\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 1.92(3 \mathrm{H}, \mathrm{d}, J 1,5-\mathrm{Me}), 2.00(3 \mathrm{H}, \mathrm{s}$, 9-Me), 2.07 (1 H , ddd-like, $J 17.5,9.5$ and $\left.1,4-\mathrm{H}^{\mathrm{ax}}\right), 2.13(3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 2.43\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 17.5\right.$ and $\left.5.5,4-\mathrm{H}^{\mathrm{eq}}\right), 3.99(1 \mathrm{H}, \mathrm{m}, 3-$ H), $6.00(1 \mathrm{H}, \mathrm{d}, J 12,12-\mathrm{H}), 6.32(1 \mathrm{H}, \mathrm{t}, J 12,11-\mathrm{H}), 6.36(1 \mathrm{H}$, br d, $J 12,14-\mathrm{H}), 6.70\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.11.5,15^{\prime}-\mathrm{H}\right), 6.93$ (1 H, br d-like, $J 12,10-\mathrm{H}), 6.96\left(1 \mathrm{H}\right.$, br d, $\left.J 11.5,14^{\prime}-\mathrm{H}\right), 6.98$ ($1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $12,15-\mathrm{H}$) and $9.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathbf{M}^{+}, 364.240$).

Compound 33: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 307$ and $414 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3400(\mathrm{OH}), 2200(\mathrm{C} \equiv \mathrm{C}), 1675$ (conj. CHO), 1615 and 1595 (split) and $1570(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.15\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.21$ ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}$), $1.47\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}^{\mathrm{ax}}\right), 1.84(1 \mathrm{H}, \mathrm{ddd}, J 12$, 3.5 and $2,2-\mathrm{H}^{\mathrm{eq}}$), $1.88\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 1.94(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.04$ $(6 \mathrm{H}, \mathrm{s}, 9-13-\mathrm{Me}), 2.08\left(1 \mathrm{H}\right.$, ddd-like, $J 17,9.5$ and $\left.1,4-\mathrm{H}^{\mathrm{ax}}\right)$, $2.44\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5.5,4-\mathrm{H}^{\text {eq }}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.20(1$ H , br d, $J 12,14-\mathrm{H}), 6.51(1 \mathrm{H}$, br d, $J 11.5,10-\mathrm{H}), 6.63(1 \mathrm{H}$, dd, $J 14$ and $\left.11.5,15^{\prime}-\mathrm{H}\right), 6.65(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,11-\mathrm{H}), 6.90(1$ $\mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.94\left(1 \mathrm{H}\right.$, br d, $\left.J 11.5,14^{\prime}-\mathrm{H}\right), 7.17(1 \mathrm{H}, \mathrm{dd}, J$ 14 and $12,15-\mathrm{H}$) and 9.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$) (Found: $\mathrm{M}^{+}, 364.241$).

Preparation of optically active halocynthiaxanthin 2. In the same manner as described for the preparation of optically active fucoxanthin 1 , the skeletal compound $4(169 \mathrm{mg}, 0.29 \mathrm{mmol})$ was treated with MCPBA and purified by PHPLC (CHEMCOSORB 7-ODS-H, $1.0 \times 30 \mathrm{~cm}$; MeOH) to provide an epoxide mixture ($85 \mathrm{mg}, 49 \%$) as a red solid and recovered starting material ($28 \mathrm{mg}, 16 \%$). PHPLC separation (CHIRALCEL OD; DAICEL IND., Ltd., $1.0 \times 25 \mathrm{~cm}$; EtOH-hexane, $9: 41 ; 37^{\circ} \mathrm{C}$) of the mixture provided the syn-epoxide $27(27 \mathrm{mg}$, 16%) and the anti-epoxide (halocynthiaxanthin) $2(9 \mathrm{mg}, 5 \%)$, each in pure form. Spectral properties of the synthetic halocynthiaxanthin 2 were in agreement with those of a natural specimen. ||

Compound 2: $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 279,423 \mathrm{sh}, 453$ and 475 sh ; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 277,428 \mathrm{sh}, 452$ and $477 \mathrm{sh} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3420(\mathrm{OH}), 2190(\mathrm{C} \equiv \mathrm{C}), 1660($ conj. CO) and $1610(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.97\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right)$, $1.04\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.15(3$ $\mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}$), 1.20 and 1.22 (each $3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}$ and $5-\mathrm{Me}$), $1.35\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.11,2-\mathrm{H}^{\mathrm{ax}}\right), 1.46\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right)$, $1.52\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}^{\mathrm{eq}}\right), 1.79\left(1 \mathrm{H}\right.$, dd, $J 14$ and $\left.9.5,4-\mathrm{H}^{\mathrm{ax}}\right), 1.84(1$ H, ddd, $J 12.5,3.5$ and $\left.2,2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 1.93\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime}-\mathrm{Me}\right), 1.95(3 \mathrm{H}$, $\mathrm{s}, 9-\mathrm{Me}), 1.98\left(3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}\right), 2.00(3 \mathrm{H}, \mathrm{s}, 13-\mathrm{Me}), 2.02(3 \mathrm{H}, \mathrm{s}$, $\left.9^{\prime}-\mathrm{Me}\right), 2.07\left(1 \mathrm{H}\right.$, ddd-like, $J 17.5,9.5$ and $\left.1.5,4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 2.32(1$ H, br dd, $J 14$ and $\left.4.5,4-\mathrm{H}^{\text {eq }}\right), 2.43(1 \mathrm{H}$, br dd, $J 17.5$ and 5.5 , $\left.4^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 2.60$ and $3.65\left(\right.$ each $\left.1 \mathrm{H}, \mathrm{d}, J 18.5,7-\mathrm{H}_{2}\right), 3.82(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}), 3.99\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.29\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12,14^{\prime}-\mathrm{H}\right), 6.36(1 \mathrm{H}$, $\left.\mathrm{d}, J 15,12^{\prime}-\mathrm{H}\right), 6.41(1 \mathrm{H}, \mathrm{d}, J 11.5,14-\mathrm{H}), 6.46(1 \mathrm{H}$, dd-like, J 12 and $\left.1,10^{\prime}-\mathrm{H}\right), 6.57\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.12,11^{\prime}-\mathrm{H}\right), 6.58(1 \mathrm{H}$, dd, $J 15$ and $11,11-\mathrm{H}), 6.65(1 \mathrm{H}$, dd, $J 14.5$ and $11.5,15-\mathrm{H})$, $6.67(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.75\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.12,15^{\prime}-\mathrm{H}\right)$ and $7.15(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 598.402$. $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{4}$ requires $\mathrm{M}, 598.402$).

Compound 27: $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 279,420 \mathrm{sh}, 453$ and 475 sh ; $\lambda_{\text {max }}$ (hexane) $/ \mathrm{nm} 277,340,425 \mathrm{sh}, 451$ and $478 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3420(\mathrm{OH}), 2190(\mathrm{C} \equiv \mathrm{C}), 1660(\mathrm{conj} . \mathrm{CO}), 1610$ and $1578(\mathrm{C}=\mathrm{C})$; $\delta_{\mathbf{H}}(500 \mathrm{MHz}) 0.94\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{ax}}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}^{\mathrm{eq}}\right), 1.15(3$

[^1]$\mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{ax}}$), 1.20 and 1.21 (each $3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{Me}^{\mathrm{eq}}$ and $5-\mathrm{Me}$), $1.33\left(1 \mathrm{H}\right.$, ddd, $J 12.5,3.5$ and $\left.1,2-\mathrm{H}^{\mathrm{eq}}\right), 1.46\left(1 \mathrm{H}, \mathrm{t}, J 12,2^{\prime}-\right.$ $\left.\mathrm{H}^{\mathrm{ax}}\right), 1.54\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.10,2-\mathrm{H}^{\mathrm{ax}}\right), 1.84(1 \mathrm{H}$, ddd, $J 12,4$ and $\left.2,2^{\prime}-\mathrm{H}^{\mathrm{eq}}\right), 1.88\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.8.5,4-\mathrm{H}^{\mathrm{ax}}\right), 1.93(3 \mathrm{H}, \mathrm{s}$, $\left.5^{\prime}-\mathrm{Me}\right), 1.94$ ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.98 ($3 \mathrm{H}, \mathrm{s}, 13^{\prime}-\mathrm{Me}$), 2.00 ($3 \mathrm{H}, \mathrm{s}$, $13-\mathrm{Me}), 2.02\left(3 \mathrm{H}, \mathrm{s}, 9^{\prime}-\mathrm{Me}\right), 2.07$ (1 H , ddd-like, $J 17.5,9.5$ and $\left.1,4^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 2.23\left(1 \mathrm{H}\right.$, ddd, $J 15,6$ and $\left.1,4-\mathrm{H}^{\mathrm{eq}}\right), 2.43(1 \mathrm{H}$, ddd, J $17.5,5.5$ and $1.5,4^{\prime}-\mathrm{H}^{\mathrm{eq}}$), 2.72 and 3.57 (each $1 \mathrm{H}, \mathrm{d}, J 18,7-\mathrm{H}_{2}$), $3.92(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.99\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.29(1 \mathrm{H}$, br d, $J 11.5$, $\left.14^{\prime}-\mathrm{H}\right), 6.36\left(1 \mathrm{H}, \mathrm{d}, J 15,12^{\prime}-\mathrm{H}\right), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.5,14-\mathrm{H})$, $6.46\left(1 \mathrm{H}\right.$, dd-like, $J 11.5$ and $\left.1.5,10^{\prime}-\mathrm{H}\right), 6.57(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.11.5,11^{\prime}-\mathrm{H}\right), 6.58(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11,11-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dd}, J$ 14.5 and $11.5,15-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, J 15,12-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, J$ 14.5 and $\left.11.5,15^{\prime}-\mathrm{H}\right)$ and $7.14(1 \mathrm{H}$, dd-like, $J 11$ and $1,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 598.401$).

Acknowledgements

We are indebted to Professor Y. Koyama, Kwansei Gakuin University, and Professor K. Tsujimoto, Japan Advanced Institute of Science and Technology, Hokuriku, for their invaluable gift of natural fucoxanthin. We appreciate Dr W. Miki, Marine Biotechnology Institute Co., Ltd., Shimizu, Shizuoka, Japan for an invaluable gift of natural halocynthiaxanthin. We also thank the chemical support of Kuraray Co., Ltd., Japan and Dr U. Hengartner, Hoffmann-La Roche Ltd., Basel, Switzerland for his gift of some $(4 R, 6 R)$-4-hydroxy-2,2,6trimethylcyclohexanone.

References

1 Part 2, Y. Yamano, S. Sumiya and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1995, 167
2 R. Bonnett, A. K. Mallams, A. A. Spark, J. L. Tee, B. C. L. Weedon and A. McCormick, J. Chem. Soc. C, 1969, 429; K. Bernhard,
G. P. Moss, Gy. Tóth and B. C. L. Weedon, Tetrahedron Lett., 1976, 115.
3 F. T. Haxo, Comparative Biochemistry of Photoreactive Systems, ed. M. B. Allen, Academic Press, New York, 1960, p. 339.
4 T. Matsuno and M. Ookubo, Tetrahedron Lett., 1981 22, 4659; T. Matsuno, M. Ookubo, T. Nishizawa and I. Shimizu, Chem. Pharm. Bull., 1984, 32, 4309.
5 J. Okuzumi, H. Nishino, M. Murakoshi, A. Iwashima, Y. Tanaka, T. Yamane, Y. Fujita and T. Takahashi, Cancer Lett., 1990, 55, 75; H. Nishino, M. Tsushima, T. Matsuno, Y. Tanaka, J. Okuzumi, M. Murakoshi, Y. Satomi, J. Takayasu, H. Tokuda, A. Nishino and A. Iwashima, Anti-Cancer Drugs, 1992, 3, 49.
6 S. Liaaen-Jensen, Pure Appl. Chem., 1991, 63, 1.
7 Y. Yamano and M. Ito, Chem. Pharm. Bull., 1994, 42, 410; M. Ito, Y. Yamano, S. Sumiya and A. Wada, Pure Appl. Chem., 1994, 66, 939.

8 E. Widmer, M. Soukup, R. Zell, E. Broger, H. P. Wagner and M. Imfeld, Helv. Chim. Acta, 1990, 73, 861.

9 Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1993, 1599.
10 (a) K. Narasaka, H. Kusama and Y. Hayashi, Chem. Lett., 1991, 1413: (b) H. Pauling, D. A. Andrews and N. C. Hindley, Helv. Chim. Acta, 1976, 59, 1233; (c) M. B. Erman, I. S. Aul'chenko, L. A. Kheifits, V. G. Dulova, J. N. Novikov and M. E. Vol'pin, Tetrahedron Lett., 1976, 2981; (d) P. Chabardes, Tetrahedron Lett., 1988, 29, 6253.
11 A. Fischli, H. Mayer, W. Simon and H.-J. Stoller, Helv. Chim. Acta, 1976, 59, 397.
12 G. Englert, T. Bjarnland and S. Liaaen-Jensen, Magn. Reson. Chem., 1990, 28, 519.
13 K. Bernhard, F. Kienzle, H. Mayer and R. K. Müller, Helv. Chim. Acta, 1980, 63, 1473.
14 M. Ito, Y. Hirata, K. Tsukida, N. Tanaka, K. Hamada, R. Hino and T. Fujiwara, Chem. Pharm. Bull., 1988, 36, 3328.

15 J. A. Haugan, P. Kongsaeree, J. Clardy and S. Liaaen-Jensen, Tetrahedron: Asymmetry, 1994, 5, 1367.

Paper 5/01201E
Received 28th February 1995 Accepted 7th April 1995

[^0]: \ddagger This was kindly supplied by Professor Y. Koyama, Kwansei Gakuin University, and Professor K. Tsujimoto, Japan Advanced Institute of Science and Technology, Hokuriku.

[^1]: $\|$ This was kindly supplied by Dr W. Miki, Marine Biotechnology Institute Co., Ltd., Shimizu, Shizuoka, Japan.

